A manganese Catalyst for Highly Reactive yet Chemoselective Intramolecular C(*sp*³)-H Amination

Shauna M. Paradine, Jennifer R. Griffin, Jinpeng Zhao, Aaron L. Petronico, Shannon M. Miller and M. Christina White. Nature Chemistry, **2015**, 7, 987-994

C-H Amination: Previous Work by the White Group

Metallonitrene C-H Amination:

Seminal Papers:

Breslow & Gellman: JACS, 1983, 105, 6728

Barton: J. Chem. Soc. Perkin. Trans. 1, 1983, 445

Mansuy: Tet. Lett., 1988, 29, 1927

Metallonitrene C-H Amination: Current Methodologies & Applications

C-H Oxidation Reactivity/ Selectivity Paradigm

[FePc]·SbF₆

 $X = SbF_6$

Reactivity

Selectivity

This Paper:

Reaction Development

Entry	Catalyst	Additive	% yield (% rsm)
1	[FePc]·SbF6 (1)*	-	29 (32)
2	[MnPc]·SbF6 (2)*	-	43 (27)
3	Fe(TPP)·SbF6*	-	4 (85)
4	Mn(TPP)·SbF6*	-	18 (62)
5	Fe(<i>R,R</i> -salen)·SbF6*	-	<1 (85)
6	Mn(<i>R,R</i> -salen)·SbF6*	-	4 (78)
7	Fe(<i>R</i> , <i>R</i> -PDP)(SbF6)2	-	<1 (91)
8	Mn(<i>R</i> , <i>R</i> -PDP)(SbF6)2	-	7 (82)
9	[MnPc]·SbF6 (2)*	4 Å MS	60 (11)
10	[MnPc]·SbF6 (2)*	4 Å MS	58 (20) [†]
11	[Mn(^t BuPc)]·SbF ₆ (3)*	4 Å MS	75 (<5)
12	[Fe(^t BuPc)·SbF ₆ [*]	4 Å MS	29 (34)
13	[Mn(^t BuPc)]·SbF ₆ (3) [*]	4 Å MS	72 (14) [†]
14	[Mn(^t BuPc)]·SbF ₆ (3) [*]	4 Å MS	71 (13) [‡]
15	[Mn(^t BuPc)]·SbF ₆ (3) [*]	4 Å MS	68 (16) ^{†.§}

Reaction Scope

Reaction Scope

Late-Stage Diversification of Complex Molecules

Mechanistic Studies

Mechanistic Studies

Proposed Mechanism

Conclusions/ Future Directions

Conclusions:

- Report a new C-H amination catalyst Manganese tert-butylphthalocyanine [Mn(tBuPc)]
- 10 million x more abundant than noble metal predecessor
- Functionalizes all C(sp³)-H bonds (including 1° aliphatic) (=highly reactive)
- Stereospecific
- Broad functional group tolerance (=highly selective)
 - increases it's potential for natural product synthesis & late-stage diversification of pharmaceuticals

Future Directions:

- Intermolecular variant
- Asymmetric variant